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An E×B drift wave transport model [1] was implemented to investigate the onset and break-

up of shearless transport barriers (STBs) when considering a non-monotonic radial electric field

profile for a magnetically confined plasma. These barriers were found by using the rotation num-

ber profile, since they are located in the profile’s vanishing-derivative position, and analyzed by

stroboscopic Poincaré phase portraits obtained by numerically integrating the motion equations.

Considering as control parameters the amplitude of the electrostatic potential perturbation, non-

resonant mode, and the radial position of the electric field extreme value, we found intervals of

parameters values for which the barrier exists, breaks up or even bifurcates into two or three

secondary shearless curves. Also, we found effective transport barriers related with stickiness

regions which appear both before and after the STB breaks up. In general, we noted that the

STB can emerge recurrently even if we are increasing the perturbation or displacing the electric

field profile.

In first place, let us consider that the plasma particles are under the action of an electrostatic

field, E(x, t), which can be decomposed into a radial mean part, Er(r)êr, and a floating part,

Ẽ(x, t) =−∇φ̃(θ ,ϕ, t),

E(x, t) = Er(r)êr−∇φ̃(θ ,ϕ, t). (1)

The floating electrostatic potential, φ̃ , is regarded as a superposition of harmonic waves travel-

ing in the poloidal and toroidal directions, θ and ϕ ,

φ̃(θ ,ϕ, t) = ∑
n

φn cos(Mθ −Lϕ−nω0t−αn), (2)

where M and L are their dominant wave numbers, respectively, ω0 their fundamental angular

frequency, φn the amplitude and αn the phase for each perturbation mode.

Also, we assume that the plasma is magnetised by a magnetic field, B(x), which is assumed

to be in the form of a screw pinch configuration, i.e, the B field has a θ and a ϕ components,

B(x) = Bθ êθ +Bϕ êϕ ; B≈ Bϕ � Bθ , (3)



for a tokamak approximated as a 2πR periodic cylinder, where R is the major radius of the torus.

It means that a/R = ε � 1, with a the minor radius of the plasma.

Finally, for a test particle in the plasma, let us assume that its guiding center moves along the

magnetic field lines with velocity v‖ and an E×B/B2 drift,

dx
dt

= v‖
B
B
+

E×B
B2 . (4)

On using two new variables, the action I = (r/a)2 and the angle ψ = Mθ −Lϕ , the equation of

motion (4) reduces to the 1.5-degrees-of-freedom dynamical system

dI
dt

= 2M∑
n

φn sin(ψ−nω0t−αn)

dψ

dt
= εv‖(I)

[M−Lq(I)]
q(I)

− M√
I
Er(I),

(5)

where q(I) = rB/RBθ is the safety factor profile. In order to obtain (5), we adimensionalize the

equation of motion (4) using the characteristic scales a, E0 and B.

For the tokamak TCABR, we adopted the parameters E0 = 4.6 kV/m, B = 1.1 T, a = 0.18 m

and ε ≈ 0.3. For the plasma profiles, we used the profiles proposed in [2, 3], namely, for the

equilibrium radial electric field, Er(r) = 3α(r/a)2 + 2β (r/a)+ γ , with (α , β , γ) = (−0.563,

1.250, −1.304), for the safety factor, q(r) = 1.0+3.0(r/a)2, and for the plasma toroidal veloc-

ity, v‖ =−1.43+2.82tanh(20.30r/a−16.42).

Taking the perturbation angular frequency ω0 as 62 rad · ms−1, we noted that in the interval

I = [0.2,1.4] only two modes are resonant, n = 3 and n = 4. So, we just considered three pertur-

bation modes, as in [2, 3, 4], φ3 = 1.0×10−3, φ4 = 0.12×10−3, and a non-resonant mode, φ2,

which we varied from 0 to 8.5× 10−3 with a stepsize 0.1× 10−3. Moreover, keeping α fixed,

we considered the parameter k =−β/(3α), which is the radial position of the extreme value of

Er, and repeated the same procedure described below varying k with a stepsize 0.001.

Thus, we integrated numerically the set of equations (5) and constructed the ψ × I phase

space drawing a point every period Tj = j2π/ω0, j = 0,1,2, ...,N. The existence of the STB

was verified through the extreme values of the rotation number profile, Ω, which is determined

by

Ω = lim
N→∞

ψN−ψ0

N
. (6)

From figures 1 and 2, we note that the STB prevents the chaotic transport outside the plasma,

however, its appearance is recurrent. We see that there are several intervals for the control pa-

rameters, φ2 and k, where the barrier can set on, break up or bifurcate, even if we are increasing

the perturbation amplitude.



Figure 1: Rotation number of the STB as a function of the parameters (a) φ2 and (b) k. Red

(black) bars indicate the existence (non-existence) of shearless barriers. Blue and green bars

indicate intervals with two or three barriers, respectively.

Figure 2: For φ2 = 1.5× 10−3, (a) in the Poincaré section, we see a shearless transport barrier

colored in red which disconnects two chaotic regions. (b) The barrier is determined through the

maximum value of the rotation number profile.

In figure 3(a), a stickiness region appears next to the STB. It behaves as an effective barrier

when the actual shearless curve is broken up, see figure 3(b). In this region, there are few

crossings between the manifolds and, as a result, an orbit in the black (blue) region will spend

a long time to cross to the blue (black) one.

Conclusions

We identified intervals where the barrier exists, is broken up or bifurcates into two or three

additional barriers, for the parameters φ2 and k.

We verified that shearless transport barriers offer a strong resistance to the chaotic transport

even after they break up. In this process, a stickiness region can appear trapping the chaotic

orbit for a long time.



Figure 3: (a) For φ2 = 2.0×10−2, a stickiness region appears before the break-up of the barrier

in (b) for φ2 = 2.1×10−3. In panel (b), we plot the stable (black and purple) and the unstable

(red and blue) manifolds related with the stickiness.

We studied the dynamics of the stickiness region making use of the unstable and stable man-

ifolds. We found that, in this region, crossings between manifolds barely occur, leaving few

routes to the orbit to travel across the remnant of the barrier.
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