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Introduction

Non-thermal plasmas play a significant role in a large set of applications, ranging from the

industrial and aerospace fields to agriculture and medicine [1]. One of the most common tech-

niques to obtain a non-thermal plasma is through a Dielectric Barrier Discharge (DBD) [2].

Although being well established devices, the operation of DBD reactors is governed by a num-

ber of complex physical mechanisms, that are worth investigating. In this work we describe the

implementation of a drift-diffusion model for the simulation of a volumetric DBD reactor. The

aim of the model is to follow the temporal and spatial evolution of the main neutral and charged

species produced in the discharge. Finally, we introduce a numerical treatment of the electron

dynamics based on coupling the Poisson equation with the Boltzmann relation, and compare

the obtained results against a classic full drift-diffusion approach.

Model formulation

Considering a plasma constituted by a given number ns of species, and assuming that the

validity conditions of a fluid model are met (i.e., the characteristic macroscopic length Lc ≫

mean free path λc, and the characteristic macroscopic time tc ≫ mean collision time 1/νc), the

foundation of the model is constituted by the drift diffusion equations for each species:

∂Ns

∂ t
+∇ · (−Ds∇Ns + ⟨vs⟩Ns) = Ωs, (1)

in which Ns and Ds are the number density and the diffusion coefficient of the s−th species,

respectively. The average drift velocity ⟨v⟩s = (qs/|qs|)µsE is defined via the product between

the electric field and the electrical mobility µs of the species, accounting for the sign of the

species charge qs. The right-hand side term in (1) takes into account of the elementary processes

in the plasma (i.e., thermal ionisations, recombinations, attachments).

An electrostatic formulation is used to describe the electric field behaviour. That is, assuming

a conservative electric field, the governing equation in the plasma region is given by the Poisson

equation:

∇
2
ϕ =− ρ

ε0
, (2)



where ρ is the electric charge volume density and ε0 the vacuum dielectric constant. The charge

density ρ depends on the space distribution of the ions and electrons number densities, which

in turn are governed by the drift diffusion equations (1):

ρ =
ns

∑
s=1

qsNs, (3)

Equations (1) for all the species of interest, coupled with (2), constitute a model that can

be used to evaluate the evolution of a discharge over time. We will call this model Full Drift

Diffusion (FDD). However, it can be observed that, among the species in the plasma, electrons

exhibit markedly larger swarm parameters. As a result, numerical schemes (most notably ex-

plicit numerical schemes) that solve this problem are bound to use small time integration steps

determined by the fast dynamics of the electrons. One possible way around this limitation is to

consider that electrons adapt instantaneously to the local value of the electric potential, accord-

ing to the Boltzmann distribution. Consequently, assuming a plasma constituted by nH heavy

species, the charge density can be expressed as:

ρ =
nH

∑
s=1

qsNse− eNe,0 exp
(

ϕ −ϕ0

Te,eV

)
, (4)

where Te,eV = kBTe/e is the electron temperature in eV, ϕ0 the electric reference potential and

Ne,0 the background electron number density. The model presented in this paper is therefore

constituted by the equations for heavy species, coupled with the non-linear Poisson equation in

which the charge density is evaluated by means of (4). This second approach will be hereafter

referred to as Boltzmann Drift Diffusion (BDD). According to this approach, the electron num-

ber density and electric potential are evaluated by means of a steady state formulation, driven

by the time evolution of the heavy species. Applying (4) on a finite domain does not guarantee

the global charge neutrality. Indeed, an additional condition has to be enforced:

Qtot = Qs +
∫

V
ρ(N1,N2, . . . ,NnH ,ϕ,ϕ0,Ne,0)dV = 0, (5)

where Qs is the charge deposited on the walls. Equations (1) and (2) have been discretised by

means of a cell-centred finite volume method. Convective fluxes are dealt with by means of a

first order upwind scheme, and the explicit Euler method has been adopted for time integration.

Assuming a 1D formulation of the problem with a space discretisation ∆x, the integration time

step ∆t is subject to the stability condition:

∆t ≤ min
[

∆x
(2Ds/∆x)+ |⟨vs⟩|

]
. (6)



It is evident that condition (6), when applied to the BDD approach, becomes less restrictive,

since only the swarm parameters of the heavy species are taken into account. On the other hand,

a single time step using BDD requires a considerably higher computational effort, since the

non-linear Poisson equation has to be solved. In this work, this task is carried out by means of

a Newton-Raphson algorithm. The reference potential ϕ0 is adjusted to satisfy the condition (5)

using a bisection method.

A simple study case: ambipolar diffusion

To validate the code a simple case of ambipolar diffusion is simulated. Ambipolar diffusion

has been chosen because, under certain conditions (Γe = Γi, Ne ≈ Ni = N and no external field)

the electric field can be expressed using an analytical formula [3]:

E =
Di −De

µe +µi

∇N
N

. (7)

For the sake of simplicity chemical reactions are not included, considering only two types

of particles: electrons and ionised Argon. A one dimensional computational domain has been

considered, discretised by means of 101 points, with a total length of 0.1 mm. The initial number

densities of the species follow a Gaussian distribution. In the simulation constant diffusivity

and mobility were assumed, using the values reported in table 1 that, according to the Einstein

relation De/µe = Te,eV lead to an electron temperature of 0.2 eV.

µe µi De Di

5.0×10−2 1.5×10−4 1.0×10−1 5.0×10−6

Table 1: Swarm parameters used in the simulations. Mobilities are in m2V−1s−1 and diffusion

coefficents in m2s−1

Results and discussion

As shown in Fig. 1 the results obtained with the two approaches considering constant param-

eters are in good agreement with the analytical solution. Moreover, the ion fluxes calculated

using FDD and BDD method are nearly equal, as shown in Fig. 2.

It’s important to notice that the BDD approach allows adopting time steps of ∼ 10−9 s com-

pared to ∼ 10−13 s, leading to a speedup of 20-100 times, depending on the simulation condi-

tions.
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(a) Results using BDD approach with a time

step ∆t = 1×10−13 s
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(b) Results using BDD with a time step

∆t = 1×10−9 s

Figure 1: Comparison between analytical solution and simulation results after 0.1 µs with constant

parameters
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Figure 2: Comparison between fluxes calculated using BDD e FDD approach

Conclusion

In this paper, a novel drift-diffusion model for plasma analysis has been proposed. The model

uses the Boltzmann relation to evaluate the spatial distribution of electrons. A simple case of

ambipolar diffusion has been considered for validation, using the analytical solution and the

results of a conventional drift diffusion model (FDD) as terms of comparison. The results have

shown a good agreement. The BDD formulation is obviously not able to capture the fast dy-

namics of the electrons, but it allows to increase the time step by 3-4 orders of magnitude.
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