On activation of the non-equilibrium vibrational CO₂ dissociation in plasma chemistry

Vladislav Kotov

Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung - Plasmaphysik (IEK-4), Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich, Germany

The plasma-chemical splitting of CO₂ has been intensively studied in the last decade in view of its potential applications for Power-2-X technologies. Dissociation from high vibrational states in conditions of strong vibrational non-equilibrium at relatively low translationalrotational temperatures T was considered in the past as the most efficient mechanism of the CO₂ plasma conversion [1]. This mechanism could not be repeated so far in modern day experiments which rather focus on thermal quenching [2]. The contribution will present a theoretical investigation of the conditions at which the non-equilibrium vibrational mechanism could be triggered. Two approaches are applied. First is a semi-empiric estimate based on the vibrational relaxation rates obtained in shock tube and sound absorption experiments. Second is the state-to-state model of the CO₂ vibrational kinetics and the primary dissociation process $CO_2 + M \rightarrow CO + O + M$ in 2-modes approximation [3]. The governing parameter Q/n_0^2 has been introduced, where Q is the specific volumetric power coupled in plasma and n_0 is the initial number density of CO₂. The state-to-state simulations suggest that the non-equilibrium process can be activated when Q/n_0^2 exceeds some critical value. $(Q/n_0^2)_{crit}$ around $6\cdot 10^{-40}~{\rm W\cdot m^3}$ at T=300 K found by the first approximate approach agrees well with the numerical results. The semi-empiric method is further extended to estimate the potential reduction of $(Q/n_0^2)_{crit}$ in CO₂/CO mixtures.

References

- [1] Legasov V A et al. 1978 Dokl. Akad. Nauk. 238 66
- [2] den Harder N et al. 2017 Plasma Process Polym. 14
- [3] Kotov V 2021 Plasma Sources Sci. Technol 30 055003