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motivation & main results

» off-axis NB heating is crucial for current profile control, particularly in ramp-up phases

* ASDEX Upgrade (AUG) scenarios with exclusive off-axis heating brings ENg/Tthermal and Brast/ Behermal closer to future experiments

* what is the effect of the observed EP instabilities on the background profiles?

* validate stability and transport tools on extended AUG data base, including experimental isotope studies: different Bs, H,L-modes
* use IMAS to develop and validate an automated EP stability workflow - model trends instead of single time points
* validation of linear stability model as basis for the implementation of reduced EP transport models [see also P5a.l |3 Carlevaro, P5b.106 Falessi, P5b.107 Li/Zonca]

motivation: develop IMAS based tool to calculate electromagnetic, giobal
EP transport comprising different models of fidelity/cost
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first implementation of ATEP code finished;
this poster: verification and validation [4,5]

Dedicated isotope studies of strongly non-linear EP dynamics
on ASDEX Upgrade [3, Lauber IAEA FEC 2018, 2022, Pla.l 12 Rettino]

with sub-Alfvenic beams (2.5-5MW)

in current flat-top with stationary plasma conditions

compatible with tungsten wall

for EP physics relevant parameters: Bep/Pthermal ~ |, Engi/Tie = 100

* database for different isotope mixes: deuterium (D) and hydrogen (H)

ideal for modelling: smooth transitions between different regimes:

* due to H-D mix, L-H transition does not occur with SMW NBI power (1.5s-3s)
* only slowly rising density and beam blip finally trigger slow transition (3.1s-3.7s)
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* modes in electron (positive mode numbers) and ion (negative mode numbers)
diamagnetic directions are driven by positive and negative EP gradients

as density rises, n=2 TAE drops in frequency

although drive remains constant, TAE transitions from strongly bursting to steady-state
n=-2 kink mode q=2.5 surface

comparison of theoretical TAE mode frequency and experimental measurements allows
us to determine local isotope mix ratio (experiment: H/H+D=0.35-0.45 line integrated)
prominent n=-2 EAE at 300 kHz observed - too high frequency for principal resonances
with NB ions (93keV) - unclear excitation mechanism, but probably similar to [Maraschek
PRL, 1997]

EAE jumps to 340kHz and then disappears in early LH transition -
different drive [10]?

increased damping or
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fully automated analysis using EP Stability WF, based on IDA and IMAS

* IDA [7] profiles and equilibria are stored in IDS using Trview [8] on Gateway
* automated EP stability workflow [1,2,6] is used to process co and counter-propagating TAEs
* here: 160 time slices with 5ms resolution: Helena, LIGKA local, global [9]

190 , e
global -
180 local = - g
I 170 5
] 2
S' 160 .g_
150 T
140 1 1 1 1 1 1 1
3 3.13.23.33.43.53.63.7 3 3.13.23.33.435363.7
time [Ms] time [Ms]
288 | Lr | t‘=374'7[m$]l =
N 350 - 08 L E par = _
~ 300 g2 o
> 250 2 '
S 200 a 0. 4
> 150 i
£ 100 v 0.2
50 Y V
0 0

O 02 04 06 0.8

radius [r_pol]

0 02 0406 08 1

radius [r _pol]

1

* note: damping rates can jump by 100% within 10 ms - core continuum damping very
sensitive to g

* trend from high to low damping during the transition as observed in experiment

* all linear information stored in IDSs, uncertainty analysis based on IDA data possible

constrain nature of n=-2 mode at 300 kHz:
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* n=-2 continua do not change significantly during

0fl l"l ~ || #39681 NBI [W] the phase when 300kHz mode jumps to 340 kHz
K N, e and then disappears
13 . A W“\’“\’“’” * LIGKA analysis shows that various weakly

ne [m-7], on axis damped EAEs are present in gap between 250-

400kHz

* jump in f seems to correspond to different EAEs
at different time points

* since damping properties do not change, the
underlying drive mechanisms must change

* change in ballooning structure not observed
when comparing EAE mode structures

Te [eV], o-'n.-axis.
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