Efficient high-order harmonic generation via surface plasma compression

with lasers

B.Y. Li ${ }^{1,2}$, F. Liu ${ }^{1}$, M. Chen ${ }^{1}$, F.Y. Wu ${ }^{1}$, J.W. Wang ${ }^{3}$, L. Lu ${ }^{1}$, J.L. Li ${ }^{1}$, X.L. Ge ${ }^{1}$, X.H. Yuan ${ }^{1}$, W.C. Yan ${ }^{1}$, L.M. Chen ${ }^{1}$, Z.M. Sheng ${ }^{1,2}$, J. Zhang ${ }^{1,2}$
${ }^{1}$ Key Laboratory for Laser Plasmas (MOE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
${ }^{2}$ Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
${ }^{3}$ State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine
Mechanics, Chinese Academy of Sciences, Shanghai 201800, China

The efficiency of high-order harmonic generation from a relativistic laser interacting with solid targets depends greatly on surface plasma distribution. The usual method of enhancing efficiency involves tuning the plasma scale length carefully by improving the laser contrast [1,2]. Here, we experimentally demonstrate that efficient harmonics can be achieved directly by compressing large-scale surface plasma via the radiation pressure of a circularly polarized normally incident prepulse. The harmonic generation efficiency obtained by this method is comparable to that obtained with optimized plasma scale length by high-contrast lasers, and the harmonic spectrum plateaus at high orders. Our scheme does not rely on high-contrast lasers and is robust and easy to implement. Thus, it may pave a way for the development of intense extreme ultraviolet sources and future applications with high repetition rates. Moreover, our studies also reveal that the preplasma can be actively tailored into a curved surface using the radiation pressure of a normally incident prepulse. This may also be an efficient way to focus relativistic harmonics [3] or to produce high-order vortex harmonics [4].
[1] S. Kahaly et al. Phys. Rev. Lett. 110, 175001 (2013).
[2] F. Dollar et al. Phys. Rev. Lett. 110, 175002 (2013).
[3] H. Vincenti Phys. Rev. Lett. 123, 105001 (2019).
[4] J. W. Wang et al. Nat. Commun. 10, 5554 (2019).

