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Motivation: solar coronal heating in multi-stranded loops

▶ Coronal heating problem: what mechanisms sustain hot coronal
temperatures in the Sun’s atmosphere?

▶ On larger scales, such a mechanism could cause bright flaring emission
▶ Coronal loops:

greatest concentrations of heating,
curved between footpoints anchored on the solar surface
appearing as bundles of fine, bright strands, tracing the magnetic field

� � � � �
���������!��� ��������� $��	

���

���

���

��	

��


��
�
��
��
� 
��
���

�

��#��

��#��

��#�

��#


��#�

��#�

�
��
���
"�
��
��

#�
�

Temperature and density v. height. Observed coronal loop.
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Self-organized criticality

▶ SOC: system in easily perturbed, critical, minimally stable state
e.g. adding one grain may leave a sand-pile unchanged, or could cause a flow
down its side

▶ Avalanche: one small, local disturbance starts chain reaction of events
▶ Events collectively dissipate substantial energy

Favoured example of SOC state: sand-pile. Chain reaction.

Self-organized criticality.
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Proposition: MHD avalanches through ‘nanoflares’

▶ Self-organized criticality applied to the corona (Lu & Hamilton 1991)
▶ Corona is driven from below by photospheric granulation
▶ Eventually, a local instability occurs
▶ Chain reaction ensues, with like instabilities at neighbouring sites
▶ Coronal heating via cumulative energy release in small ‘nanoflare’ events

as proposed by the late Eugene Parker (Parker 1988)
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Geometry of models of coronal loops: straight v. curved

Families of models of coronal loops
▶ Parker (1972)’s conventional model:

straightened between two planes
topologically equivalent to curved, cylindrical
loops
straightforward to study and model

▶ Truly, geometrically curved loops
closely resemble observable loops
more challenging to implement

Straightened Parker model.

Truly curved.

Models of loops.
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Model: curved magnetic field

▶ Initially potential arcade, mostly vertical near footpoints
▶ Changing polarity across inversion line (PIL; y = 0)
▶ Flux tubes extend in y; field decays with height z
▶ Resembling bipolar regions in active regions
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Field lines. Curved field lines in component strands.

Initial, curved magnetic field in arcade.
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Model: photospheric rotations

▶ Simple, vortical motions at footpoints
▶ Flux tubes formed out of ambient field
▶ Poynting flux injects energy, as magnetic field is twisted
▶ Energy accumulates in corona until critically unstable

Rotation.

Driving imposed.
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Arrangement on base.

Footpoints.
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Methodology: numerical simulations

Dρ

Dt
= −ρ (∇ · v)

ρ
Dv

Dt
= −∇P + j×B+ Fvisc.

ρ
Dε

Dt
= −P (∇ · v) + j2

σ
+Qvisc.

DB

Dt
= (B · ∇)v −B (∇ · v)

−∇×
(
1

σ
j

)
P =

ρkBT

µm

▶ Three-dimensional numerical
simulations solve MHD equations

▶ Lare (Arber et al. 2001) code
▶ Viscosities

Shock
Background

▶ Anomalous resistivity on strong
currents

ζ =
|j|
|B|

η =

{
η0 ζ > ζcrit.

0 ζ ≤ ζcrit.
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Build-up to instability

Fastest rotation in central flux tube ⇒ it attains greatest twist ⇒ first instability

Field lines in twisted flux tube (blue), embedded within those of
an arcade (red), producing a current sheet (green).
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Onset of instability

Strong crescent of toroidal current causes resistivity and dissipation
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Cross-section at the apex (above PIL).
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Nature of instability

▶ Does geometry affect instability?
▶ Kink mode

occurs in a twisted flux tube
deforms (‘kinks’)

▶ Twist Φ here reaches critical level
in first flux tube (per Hood & Priest
1979)

▶ Phase angle of kink mode
Usually arbitrary
Here, invariably upwards

⇒ Modified, directed kink mode

▶ Torus instability also plausible, but
less likely
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Indicator of instability.

⟨Φ⟩ ≈ 3.20π Φcrit. ≈ 3.3π
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Indicator of instability.

n ≈ 1.5 ncrit. ≈ 1.0–2.0
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Chain reaction: proliferation of avalanche

▶ Central flux tube
first unstable

▶ Avalanche spreads
via chain reaction

▶ Other tubes
‘nudged’ in turn

▶ Disruption spreads
over very
widespread area

Toroidal current.
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Heating: ‘nanoflares’

▶ Temporally, heating
is impulsive and
intermittent:
Parker’s nanoflares

▶ Heating events
convert magnetic
energy into kinetic
and thermal
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Heating: evolution and composition

▶ MHD heating mechanisms:
shocks,
viscosity,
Ohmic heating

▶ Shock and viscous heating
dominate

▶ Heating seems aperiodic
▶ Consistently, about half of

injected energy is dissipated
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Fourier transform.

Total heating in arcade.
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Contours of heating

In cross-section at apex. Along length of loop.
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Current layers
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Discussion

Conclusions
▶ Avalanches viable in curved, as in

straightened, models of flux tubes
▶ Nature of instability modified by

geometry and curvature
▶ Heating:

highly time-dependent
predominantly from shocks and
viscosity
spatially dispersed and localized

Future work
▶ What differences emerge from

new geometry?
▶ Comparison of heating between

models
▶ Self-consistent treatment of

thermodynamic response in 3D
MHD
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