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High energy confinement (τe) is required for a steady-state fusion reactor [1]. High confine-

ment is typically achieved in positive triangularity (δ ) H-mode plasmas. Positive-δ has long

been known to improve both confinement and stability. However, the improvement in con-

finement from the H-mode pedestal typically is accompanied by edge localized modes, which

produce large spikes in energy flux that can erode the divertor. Experiments on TCV [2] and

DIII-D [3] have shown that L-mode confinement improves dramatically in a negative-δ shape.

Two similar DIII-D discharges with matched values for major radius, minor radius, and elonga-

tion, but opposite δ = −0.4,0.4 were compared. The plasmas were heated with up to 10 MW

of neutral beam injection (NBI) power and up to 3 MW of electron cyclotron heating (ECH)

power and had high levels of confinement.

The earliest modeling of transport of negative-δ suggested that trapped electron modes (TEM)

could be suppressed by negative-δ [4]. Gyrokinetic simulations of TCV discharges suggested

that trapped electron modes were suppressed in negative-δ compared to the positive-δ counter-

part [5]. Exploration of negative-δ showed that negative-δ has reduced transport compared to

positive-δ [6], and suggested negative-δ may increase the critical gradient leading to improved

transport [7].

The predictive capabilities of TGYRO [8] find that predicted profiles of electron temperature

(Te), ion temperature (Ti), electron density (ne), and E ×B shear (ω) agree reasonably well in

both negative-δ and positive-δ at low auxiliary powers (< 5 MW). TGYRO is analyzed for a

positive-δ and a negative-δ plasma heated with PEC = 2 MW and PNBI = 2 MW with a fixed

boundary condition for the kinetic profiles in these simulations is set to the experimental values

at ρ = 0.8. Figure 1 shows the experimental profile fits and the TGYRO predicted profiles

of Ti, Te, ne, and ω in positive-δ and negative-δ . Experiments and TGYRO predictions both
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Figure 1: TGYRO prediction (solid) of ne, Te, Ti, and ω and experimental profile fits (dashed) in

NBI+ECH heated plasmas in positive-δ (blue) and in negative-δ (green).

have higher values for ne and Te are observed in negative-δ compared to positive-δ . The Te

profile is slightly underpredicted for both positive-δ and negative-δ . The Ti profile is slightly

overpredicted (∼10%) for positive-δ , while it is almost perfectly predicted in negative-δ .
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Figure 2: TGLF-SAT0 predicted Γ (1020 m−2 s−1)

at ρ = 0.6 for a positive-δ and negative-δ ECH only

plasma plotted vs. a/LTe. The vertical dashed lines

indicate the experimental scale lengths.

Analysis of the turbulent transport using

the quasilinear gyro-Landau fluid code TGLF

[9] is performed. TGLF predicts a large dif-

ference in particle flux (Γ) between positive-

δ and negative-δ as a function of temperature

gradient scale length a/LTe , as shown in Fig-

ure 2. Here, a is the minor radius, 1/LTe =

∂Te/∂ r/Te. As a/LTe is increased, the pre-

dicted Γ for the negative-δ scenario becomes

negative. This is opposite to the predicted flux

in the positive-δ scenario where Γ increases

as a/LTe moves away from the experimental

gradient. This difference in particle transport

behavior could possibly lead to better con-

finement for negative-δ with negative-δ having better higher experimental ne and Te in Figure 2.

Core-pedestal modeling shows confinement and βN improve at negative δ and at positive δ .

Similar parameters to the DIII-D experiment of βN = 2, ne,ped = 0.35 ×1020 m−3, κ = 1.6,

Bt = 2 T, and Ip = 0.8 MA are used. Modeling is done using the STEP [10] module in OMFIT

[11], which iterates between TGYRO[8], ONETWO [12], and CHEASE [13]. TGYRO is used

to predict kinetic profiles. ONETWO is used to predict the current evolution. CHEASE is used



to to ensure Grad-Shafranov is satisfied with a Miller geometry The current is evolved assuming

the current fully penetrates to steady-state from neoclassical resistivity. An additional radially

constant current diffusion is applied where q < 1 to raise the on-axis q just above unity. A

radially uniform Ze f f = 1.7 is used. Fixed Gaussian sources of electron heating are used, one

located at ρ = 0.6 and the other at ρ = 0.0 to represent electron cyclotron heating. The pedestal

boundary condition is taken to be the EPED [14] prediction with βN = 2 shown in Figure 3.

The pedestal height increases monotonically with increasing δ . While H-mode has rarely been

observed experimentally for strong negative-δ potentially prevented due to ballooning modes

[15], we still use EPED to set the edge conditions for negative triangularity as EPED has been

shown to accurately predict negative-δ plasma down to δ =−0.2 [16]. Using EPED below δ =

−0.2 gives a reduction in edge confinement at negative-δ without needing different edge models

for negative-δ and positive-δ . TGLF-SAT0 is used in TGYRO with settings for electrostatic and

using the E ×B quench rule.
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Figure 3: STEP predicted βN NBI only (dashed) and

NBI+ECH (solid) heating Paux = 10 MW (blue) and

Paux = 20 MW (green) with EPED boundary (black).

The STEP predicted confinement improve-

ment at negative-δ is predicted to be stronger

at high power densities and with strong elec-

tron heating sources. Figure 3 shows STEP

predicted βN vs triangularity for two injected

powers: 10 MW and 20 MW, and NBI only

and a 50/50 mix of NBI+ECH. At Paux =

10 MW for both heating types, modest im-

provements in βN are predicted with simula-

tions when δ is decreased from δ = −0.2 to

δ = −0.6. For the 50/50 mix of NBI+ECH

heating, the STEP prediction of βN becomes

U-shaped at Paux = 20 MW with positive-δ with βN,δ=−0.6 ∼ βN,δ=0.6. The increase in βN at

negative-δ compared to positive-δ is stronger for NBI+ECH than with NBI only. However, all

values of βN are lower than the NBI only prediction.

The transport and integrated modeling predictive capabilities of the negative-δ scenario are

examined in which TGYRO predicts stronger ne and Te gradients in negative-δ compared to

positive-δ , consistent with the experiment. TGLF predicts that increasing electron temperature

gradient scale length reduces the particle transport in negative-δ . This suggests that electron

heating may not degrade core plasma particle confinement the way positive-δ does. The pre-

dicted confinement improvement at negative-δ from core-pedestal modeling is stronger in high



power electron heated plasmas.
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