Development of hybrid (high β) plasmas for D-T operation in JET <u>C D Challis</u>¹, J Hobirk², A Kappatou², E Lerche³, F Auriemma⁴, E Belonohy¹, I Coffey⁵, J Eriksson⁶, A R Field¹, M Fontana^{1,7}, J Garcia⁸, A Ho⁹, F Jaulmes¹⁰, D Keeling¹, D King¹, K Kirov¹, M Lennholm^{1,11}, C Maggi¹, J Mailloux¹, M Maslov¹, S Menmuir¹, G Pucella¹², E Rachlew¹³, F Rimini¹, A Sahlberg⁶, A Sips¹¹, E Solano¹⁴, C Stuart¹, M Valisa⁴ and JET Contributors* ¹UKAEA, Culham Science Centre, Abingdon, UK ²Max-Planck-Institut für Plasmaphysik, Garching, Germany ³LPP-ERM/KMS, Brussels, Belgium ⁴Consorzio RFX, Padova, Italy ⁵Queen's University, Belfast, UK ⁶Uppsala University, Uppsala, Sweden ⁷EPFL, Lausanne, Switzerland ⁸CEA, IRFM, Saint-Paul-lez-Durance, France ⁹FOM institute DIFFER, Eindhoven, Netherlands ¹⁰Institute of Plasma Physics of the CAS, Praha, Czech Republic ¹¹European Commission, Brussels, Belgium ¹²ENEA, Frascati, Italy ¹³Chalmers University of Technology, Gothenburg, Sweden ¹⁴CIEMAT, Madrid, Spain A key aim of the 2021 JET deuterium-tritium (D-T) experiments was to demonstrate steady high fusion power (10-15MW) with the ITER-like Be/W first wall. Plasmas were developed using D, repeated with T to investigate and mitigate isotope effects, and run with D-T to maximise fusion power. Compared with high current ($q_{95}\sim3$) 'baseline' plasmas, the JET 'hybrid' scenario has reduced current (2.3MA at $q_{95}\sim4.5$ -5) and increased q_0 (≥1) to avoid deleterious MHD modes and access favourable confinement properties at high poloidal β (>1). This candidate approach for ITER had never previously been tested using T or D-T fuel. In this presentation the process of 'hybrid' D-T scenario development will be explained for key phases from current ramp-up to termination, all of which are sensitive to isotope effects and impurities from the wall. For example, in the ohmic current ramp, used to pre-form the q-profile, an increase in central impurity radiation with main ion isotope mass was anticipated from previous mixed H-D experiments^a and predictive modelling, allowing mitigation actions to be rapidly implemented for T and D-T. During the early H-mode phase, prevention of impurity influxes at the edge pedestal was the primary method for core radiation control using a combination of screening and ELM flushing. This was more challenging for T & D-T plasmas compared with D, and fine adjustment of heating and gas fuelling was needed to avoid excessive edge radiation and to establish regular ELMs with $H_{98} \ge 1$. After careful adaptation for D-T, high fusion power was achieved, broadly consistent with previous modelling predictions^b given the available heating power. This led to a record fusion energy for a plasma with $n_D \approx n_T$ of ~46 MJ. ^{*}See the author list of J Mailloux et al. 2022 Nucl. Fusion https://doi.org/10.1088/1741-4326/ac47b4 ^aC D Challis et al 2020 Nucl Fusion **60** 086008 ^bJ Garcia et al 2019 Nucl Fusion **59** 086047