Deuterons and Neutrons from Cryogenic Deuterium Ribbons at Vulcan Petawatt

C. Ho¹, H. Ahmed^{1,2}, A. McIlvenny¹, P. Bonnay⁴, T. Chagovets³, D. Chatain⁴, S. Ferguson¹, D.

Garcia⁴, A. Girard⁴, L. Giuffrida³, B. Greenwood³, F. Grepl³, C. Lazzarini³, G. Milluzzo¹, F. Nawaz³, M. Notley², F. Schillaci³, V. Scuderi³, F.Souris⁴, M. Tryus³, A. Velyhan³, D. Margarone^{1,3}, M. Borghesi¹ and S. Kar¹

¹ Centre for Plasma Physics, Queen's University Belfast, Belfast BT71NN, UK.

² Central Laser Facility, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, UK

³ ELI–Beamlines Center, Institute of Physics, Czech Academy of Sciences, Za Radnicí 835, 252 41 Dolní Břežany, Czech Republic

⁴Université Grenoble Alpes, CEA IRIG-DSBT, F-38000 Grenoble, France

The sustained interest in laser-driven neutron sources comes from their compactness and affordability while opening the possibilities for a wide range of applications, potentially complementing the research carried out at large-scale spallation facilities. An experiment was carried out at the Vulcan Petawatt facility (CLF, UK) to generate bright, ultra-short neutron bursts employing cryogenic ribbons of solid deuterium. This unique target can produce a single species, debris-free ion beam suitable for a wide range of applications (depending on the gas used, e.g. proton acceleration from hydrogen gas). In this case, deuterium ions up to 25 MeV/nucleon were detected in the forward direction, correspondingly with high energy neutrons in high fluxes being produced. Due to the low density of the target ($\sim 200 \text{ mg/cc}$) and the significant radiation pressure at the delivered laser intensities $(5 \times 10^{19} - 5 \times 10^{20} \text{W/cm}^2)$, considerable compression of the deuterium plasma at the front surface is expected and accelerating bulk deuterium by the hole-boring mechanism. The neutrons are subsequently produced by the $d(d,n)^{3}$ He fusion reaction in the target bulk driven by ions produced by the hole-boring front. The ion and neutron data is complemented by the back-reflected Dopplershifted spectrum of the laser, providing measurements of the hole boring velocities at different intensities. Extensive full-scale, multi-dimensional Particle-In-Cell simulations support the experimental results to explain the complex underlying physics involving ps-class lasers at linear polarisation.