Analysis of Ion Temperature in High Intense Gas Puffing Experiment on Heliotron J

CY. Wang¹, S. Kobayashi², K. Nagasaki², DC. Qiu¹, MY. Luo¹, R. Fukushima¹, PF. Zhang¹, K.Y. Watanabe³, R. Seki³, R. Matoike¹, A. Miyashita, ¹ Y. Kondo¹, K. Inoshita¹, T. Minami², S. Kado², S. Ohshima², S. Konoshima², T. Mizzuchi², H. Okada²

¹Graduate School of Energy Science, Kyoto University, 611-0011 Uji, Kyoto, Japan ²Institute of Advanced Energy, Kyoto University, 611-011 Uji, Kyoto, Japan ³National Institute for Fusion Science, 509-5292 Toki City, Gifu, Japan

A fueling method named high intense gas puffing (HIGP) has been applied to obtain high-performance plasmas on the Heliotron J helical device. The fueling method puffs deuterium gas in a short period (~10-20ms) with high intensity. The electron density reached up to $6 \times 10^{19} \text{m}^{-3}$, depending on the HIGP intensity, with a steep density gradient at the peripheral region^[1]. With a moderate HIGP, the improvement of core ion temperature T_i has been observed in NBI plasmas. Besides, the electron density profile is more peaked at the peak density of $2.5-3.5 \times 10^{19} \text{m}^{-3}$, and the electron temperature profile was also peaked. We studied the ion temperature profile measured with a charge exchange recombination spectrum (CXRS) system equipped on Heliotron J ^[2,3]. We compared the T_i profile to that obtained in a conventional gas puffing (GP) with a similar electron density. The plasma was initiated by electron cyclotron heating first and then heated by neutral beam injection (NBI).

Several differences in T_i between the HIGP and GP cases were observed. The T_i profile is improved after HIGP turn-off compared with GP case. After HIGP turn-off, T_i increased in a rather high rate while the increase was suppressed when HIGP was operating. We observed that the relation between T_i and n_e was also different. In the HIGP case, when n_e starts to decrease, T_i is kept increasing for about 10 ms. We also observed that shape of T_i profile and NBI absorption profile was related to the shape of n_e profile. A similar relationship was also observed between T_e and n_e profiles. These phenomena suggest that HIGP may improve the ion heat transport in the core plasma with a peaked n_e profile. In a further study, we will do the heat transport analysis.

Reference

- [1] S. Kobayashi, et al., Proc 26th IAEA Fusion Energy Conference, EX/P8-17, (2016).
- [2] HY. Lee, et al., Plasma Phys. And Controlled Fusion 55 035012(2013).
- [3] XX. Lu, et al., Plasma and Fusion Research 13 1202077(2018).