Laser-plasma acceleration beyond the diffraction and dephasing limits

K. Oubrerie¹, A. Leblanc¹, O. Kononenko¹, E. Guillaume¹, C. Caizergues¹,
R. Lahaye¹, I. A. Andriyash¹, J. Gautier¹, J.-P. Goddet¹, L. Martelli¹, A. Tafzi¹, K. Ta Phuoc¹,
S. Smartsev², V. Malka², C. Thaury¹

Laser-plasma acceleration allows for producing ultra-relativistic electrons by taking advantage of the ability of plasma to carry arbitrarily intense fields [1]. In practice, three phenomena limit the acceleration length, and thus the beam energy, in a laser-plasma accelerator: pump depletion, diffraction, and dephasing. Pump depletion, i.e., the laser energy transfer to the plasma wave, and laser diffraction tend to decrease the laser intensity during its propagation down to a level from which it can no more drive a steady plasma wave. Dephasing originates from the difference in velocity between the electron bunch and the laser, which results in a progressive shift of the electron beam towards a decelerating phase of the electric field.

Here we discuss several approaches for tackling these limitations and increasing the beam energy: the rephasing technique, which extends the effective dephasing length [2], the acceleration in a laser-plasma waveguide, which prevents diffraction [3], and a dephasing-

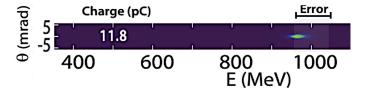


Figure 1: Mono-energetic electron beam at 1 GeV

less, diffraction-free acceleration scheme that solves all three issues at once [4]. We will notably present the first demonstration of acceleration of quasi-monoenergetic electron beams at the GeV level in a plasma waveguide (see Fig. 1) [5].

References

- [1] E. Esarey, C. Schroeder and W. Leemans, Review Modern Physics 81, 1229-1285, (2009)
- [2] E. Guillaume, et al. Physical Review Letter 115, 155002 (2015)
- [3] S. Smartsev, et al. Optics Letter 44, 3414-3417 (2019).
- [4] C. Caizergues, S. Smartsev, V. Malka and C. Thaury, Nature Photonics 14, 475-479 (2020)
- [5] K. Oubrerie, et al. arXiv:2108.03000 (2021)

¹ LOA, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 181 Chemin de la Huniere et des Joncherettes, 91120 Palaiseau, France

² Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel