
Resonance broadening in quasilinear theory: towards Kubo >1

A. Guillevic¹, M. Lesur¹, X. Garbet², A. Ghizzo¹, E. Gravier¹, G. Lo-Cascio¹, T. Réveillé¹, D. Mandal¹ ¹ Institut Jean Lamour, Nancy, France ² CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France

Charged particle velocity-space diffusion is investigated in a one-dimensional Gaussian turbulent electric field. Measurement from numerical trajectories are compared with quasi-linear theory including resonance broadening [1] [2]. Ion acoustic and Langmuir dispersion relations are investigated.

First we initialize N test particles in a turbulent electric field. We then calculate the mean square velocity of these test particles as numerical diffusion coefficient. We observe tween theory and numerical results, as shown with Langmuir dispersion.

a function of time in order to determine the Figure 1: Quasi-linear diffusion coefficient and numerical diffusion in the small Kubo number regime quantitative and qualitative agreements be- for a random electric field of Gaussian amplitude

in Fig. (1) for the Langmuir case, in the regime of Kubo number $K \ll 1$. The impact of resonance broadening becomes significant for Kubo of the order of a few percent.

In addition, we study the diffusion of particles outside quasi-linear theory regime K > 1, for a larger range of particle velocities. We find qualitative agreement with theory around the resonance velocity ($v < 4v_T$). For fast particles ($v > 4v_T$), we measure a non-zero diffusion from numerical simulations, while negligible diffusion is predicted by quasi-linear theory and resonance broadening.

References

- [1] F. Doveil and D. Grésillon, Physics of Fluids, **25**(8):1396–1402, (1982)
- [2] A. Hirose and O. Ishihara, Canadian Journal of Physics, 77: 829–833, (2000)